
MobNet: Mobile Network Simulation API

Avinash Bhadresha
Department of Computer Science

University College London
London

United Kingdom,
a.bhadresha@cs.ucl.ac.uk

May 12, 2005

Abstract

abstract goes here... ...

1 Introduction

The area of Mobile Computing is at present one of the most rapid growth
area’s in Computer Science. The miniaturization of components and in-
creased technology has allowed computer devices to be used in scenarios
never before envisaged. Mobile phones are becoming increasingly powerful
and with 3rd and 4th generation networks their ability to communicate will
be on par with today’s fixed networks. This opens up a whole host of new
models of interactions between humans and computers in their everyday
lives.1 It is not only mobile phones which are providing the thrust in mo-
bile computing. The rapid proliferation of WiFi in homes and enterprises is
enabling an always connected population of computer users. WiFi hotspots
around major attractions allow mobile users access to Internet, email and
work place applications on the move. This will be greatly improved with
idea’s such as Community networks and WiMax.

Another exciting area is Ad hoc networks in which there is no fixed
infrastructure to aid communications. Each node in an ad hoc network is
limited in its transmission range and can only directly communicate to those
nodes within it’s transmission range. With the use of multi-hop routing a
node can communicate to another node outside of its transmission range.
This opens up opportunities to share and exchange resources. This is already
common place in mobile phones where images are shared via Bluetooth. In
the last few months there has been a spate of new releases of mobile gaming

1http://www.theregister.co.uk/2005/01/28/mobile phones q4 04/

1

http://www.theregister.co.uk/2005/01/28/mobile_phones_q4_04/�


devices. Each of which feature WiFi or Bluetooth connectiviy in order to
increase gameplay by allowing multiple gamers to connect and play together
in an ad hoc network.

Mobile computing is a vast area and the discussion above gives only a
taster of the applications available and technologies involved. What is clear
though is that this depth complicates the design procedure for mobile ap-
plications. When making networked applications for mobile devices such as
PDAs and mobile phones it can be very difficult to test the applications.
First you need multiple devices, then you have to configure each one, finally
you need to get people to use them and move around while you are testing.
This makes testing a complicated and expensive process which is generally
done at the end of the development phase. At present discrete event simu-
lators are used to model mobile network applications in order to gauge how
they may work in the real world. However this only allows a model of the
application to be simulated and not the actual application itself.

We present a Mobile Network Simulator, the MobNet API, with which
you can simulate multiple networked devices on one computer allowing the
developer to quickly test out his/her Java applications. The MobNet API
also transparently simulates the movement of these devices and only allows
them to communicate with each other if they are in range therefore giving
a computerised simulation scenario mimicking the real world. The MobNet
API provides developers with a platform to quickly test out creations in
order to assess how they adapt to different mobility scenarios. This allows
for rapid application development allowing testing for fault tolerance and
failure handling. The benefits to developers is reduced development time
through the simulation of different scenarios rather than having to use real
devices. Cost of development is also reduced as a result of not requiring
multiple mobile devices to test the application. Developers can now attack
risks associated with mobility such as packet loss, out of range from servers,
etc early on in the development phase when the cost of re-development is
cheapest.

Our implementation covers the most frequently used parts of the java.net
API and we hope to fully replicate it in the future. The design has been
carefully composed in order to easily extend the implementation for use
with different mobility models. A unique feature we have achieved is the
Visualiser which is also easily extensible.

The rest of this section discusses the issues to be considered during the
development of mobile applications and current tools used for the evaluation
and simulation of such applications. Section 2 details the design goals we
tried to adhere to in order to compose the architecture followed by Section 3
which then gives an abstract overview of the final design. Section 4 provides
detailed information on the implementation of the MobNet API for Java.
Section 5 briefly introduces an example application which is then used to
evaluate the API in Section 6. Finally in Section 7 we conclude the report

2



giving future directions for our research.

1.1 Development Issues

When developing applications for mobile devices utilising networks we there
are a number of issues which have to be considered as a result of the mobile
nature of these devices:[5]2

• Due to the devices physical location its configuration may change un-
predictably as the device is connected to or disconnected from the
network, or even as the device moves between network connection
points.

• Mobile users may elect to work online or offline at a given time de-
pending on their connection.

• Wireless networks are susceptible to external interference and attenua-
tion, potentially affecting reliability and decreasing the effective band-
width.

• Battery-powered devices, by their very nature, can operate for only a
limited time without recharging or replacing batteries.

Mobile developers therefore need to take into account these factors and
design applications which operate transparently to the underlying network
and are fault tolerant. They also need to take into account power opti-
mization through efficient use of I/O. Designing such applications is a lot
more complicated than traditional applications for fixed systems. Develop-
ers therefore need tools to aid them in the mobile application development
process and a key benefit would be the ability to test prototypes early on
in the development cycle. Another reason for developers to take testing
seriously is that mobile phone developers are network are now restricting
applications which can be used on their phones and networks to those which
have been officially verified by a third party such as Symbian or Java. In
the case of Java applications there is a Java Verification service in which
Sun tests mobile applications in order to make sure they are resilient and
robust enough for consumer mobile phones. Information on the criteria can
be found at (www.javaverified.com) and the criteria for networking is given
in the Appendix.

When trying to test applications developed for Mobile scenarios we run
into a number of problems. We need multiple devices on which to test the
software and this results in having to spend time in configuring each device
to run the application. By definition mobile applications move around. If
we try and factor in this movement by physically changing the positions

2http://www.devx.com/Intel/Article/20799

3

http://www.devx.com/Intel/Article/20799�


of these devices we have two problems. The first is how to actually move
these devices? Do we expect a person to take each device and move around
with it, or do we rely on some sort of automation. Secondly the range of
movement to be tested is linked to the technology used for networked com-
munication. For example testing a Bluetooth configuration is feasible in a
laboratory where the range of Bluetooth is at most 10 metres and so move-
ment to the boundaries of this restriction is possible. However when trying
to test multiple WiFi devices we would need an area covering hundreds of
square meters which is not feasible. As we add more and more devices to test
their interactions the whole thing becomes a deployment nightmare. Mobile
devices in most cases have a limited supply for power which in the case
of Sensor networks is un-replenishable. Having to re-charge devices during
experiments and monitor battery usage is extremely tedious and can hinder
the productivity of testing. The result is that testing mobile ad hoc appli-
cations during development is very difficult and expensive to do at present.
We now present a few of the current solutions in the area.

1.2 Current Solutions

Development of mobile wireless applications has been evaluated mainly by
simulation and emulation. Ns-23 is a discrete event simulator targeted at
networking research. Ns provides support for simulation of TCP, routing,
and multicast protocols over wired and wireless (local and satellite) net-
works. One new simulation environment is called SWANS and is based on
the JiST virtual machine platform. JiST[2] is a discrete event simulation en-
gine that runs over a standard Java virtual machine. It is a new approach in
building discrete event simulators. JiST converts an existing virtual machine
into a simulation platform by embedding simulation time semantics at the
byte-code level. Regular Java code is written to make JiST simulations and
are compiled and executed in the standard way. SWANS is built atop the
JiST platform. SWANS is organized as independent software components
that can be composed to form complete wireless network or sensor network
configurations. Its capabilities are similar to ns2 but is able to simulate
much larger networks. Discrete event simulators such as ns-2 and JiST have
been used to simulate a wireless scenarios but are mainly used to simulate
routing protocols. These are not sufficient to fully test an application and
only tests a simplified model of an application.

Emulators can be used to provide static test conditions when using wire-
less mobile devices. JEmu[4] is once such emulator which uss a central con-
trol module to emulate thee wireless layer of a protocol stack. The emulator
program accepts a radio layer message from the mobile hosts and deter-
mines whether or not to forward the message depending on the location

3http://www.isi.edu/nsnam/ns/

4

http://www.isi.edu/nsnam/ns/�


information of the mobile host. EMWIN is a network emulator in which the
target mobile wireless network is precisely mapped to an laboratory net-
work consisting of several emulator nodes. Each emulator node is able to
emulate multiple mobile hosts and can be configured such that predefined
network conditions and traffic dynamics can be generated in an automatic
manner. The result is a wired network which emulates the characteristics
of the mobile wireless network. EMWIN is limited by the fact that a node
can only emulate as many nodes as it has interface cards which decrease the
ease at which multiple nodes can be emulated and increases the overall cost
complexity of the emulation.

The above methods are quite cumbersome and need a lot of user configu-
ration in order to set up the simulation/emulation scenario’s. A lightweight
framework for the development, development and evaluation of applications
and algorithms for wireless mobile ad hoc networks has been developed called
FRANC. FRANC contains a Virtual Network layer that can emulate a mul-
tihop environment by filtering and discarding received packets. This layer
creates a multihop topology even if the nodes involved are within physical
communications distance therefore allowing easy evaluation of applications
in the multi-hop topology. Also each layer in the protocol stack can be con-
figured to emulate various characteristics in order to provide a consistent
test bed. However, FRANC is designed to be used on physical nodes where
each node is actually running the application. This again enforces a level
complexity into evaluating applications as we need multiple physical nodes.

In summary, the tools available for application developers to test and
evaluate their programmes are quite complex and expensive to deploy. Most
of the tools concentrate on the lower layers of the communications stack and
are heavyweight in their use. In the following sections we introduce MobNet
a lightweight API simulating the Java.net API to aid MANET application
development and evaluation.

5



2 Design Goals

When designing the MobNet Simulation API there were a number of design
goals which had to be adhered to. Below we discuss some of the goals and
why they were chosen.

2.1 Which Platform?

There are many mobile software development platforms in the market at
present however the dominant ones are BREW, J2ME, .NET Compact
Framework.4

BREW(Binary Runtime Environment for Wireless) is an application ex-
ecution environment released by Qualcomm. BREW is a vendor neutral
application development and execution environment capable of running on
any network and any handset. It sits right above the hardware and can run
with many different device operating systems such as Palm OS. It is an up
and coming platform and has gained enterprise support with partnerships
with Oracle and IBM, the latter providing a J2ME JVM running on top of
BREW.

The Java 2 Micro Edition is the most popular platform for developing
applications for Mobile Devices. J2ME is a subset of the Java 2 Standard
Edition and is used for computationally low power devices such as Mobile
phones and PDA’s.

Microsoft have launched the .NET Compact Framework which like J2ME
is a scaled down version of the full .NET Framework. While J2ME pro-
grammes can run on a virtual machine on top of a mobile devices native
platform the .NET Compact Framework requires a smartphone running on
the Compact Framework. The advantage of the .Net Framework is that pro-
grammers can use the same set of tools and programming models used to
develop applications for desktop PC’s. This now opens the gate for a whole
new range of developers used to developing using Microsoft’s development
tools to develop applications for mobile phones without having to re-train.

We ruled out BREW due to its relative immaturity in the market com-
pared to .NET CF and J2ME. J2ME was then chosen as the target platform
for which to build the Simulation API because of its impressive cross plat-
form support and prospective wide reach. The final decision was to create
a Java tool which would allow any Java application to be simulated. As
J2ME is a subset of Java this should allow all combinations of J2ME to be
supported in our simulation API.

4http://weblogs.asp.net/nleghari/articles/44057.aspx

6

http://weblogs.asp.net/nleghari/articles/44057.aspx�


2.2 Transparent or Opaque API?

When designing the Simulation API we had to think long and hard about
how the API would fit into the application being developed. Our initial
aim was to produce an simple and easy to use simulation API which did
not need too much integration work by the developer, therefore making it
as transparent as possible. This is because a tool such as this would only
be used if it did not impose too much of an overhead into the development
process. The ideal solution would be to allow an application developer to
develop without having to make any changes in order to use the simulator. In
practice having this goal imposes a lot of inflexibility on how we implement
such a system therefore we reached a compromise in which only minimal
amounts of code has to be changed (described later).

2.3 Pluggable Mobility Models

It is essential that the Simulation API supports different mobility models
in its use. This will allow applications developers to test their software
in various different mobile scenarios. There are various types of mobility
models as classified by Camp, Belong and Davies [3] 5:

• Random Walk Mobility Model: A simple mobility model based on
random directions and speeds.

• Random Waypoint Mobility Model: A model that includes pause times
between changes in destination and speed.

• Random Direction Mobility Model: A model that forces Mobile nodes
to travel to the edge of the simulation area before changing direction
and speed.

• A Boundless Simulation Area Mobility Model: A model that converts
a 2D rectangular simulation area into a torus-shaped simulation area.

• Gauss-Markov Mobility Model: A model that uses one tuning para-
meter to vary the degree of randomness in the mobility pattern.

• A Probabilistic Version of the Random Walk Mobility Model: A model
that utilizes a set of probabilities to determine the next position of an
Mobile Node

• City Section Mobility Model: A simulation area that represents streets
within a city.

Our simulation API will contain a Mobility Model interface which will allow
different models to be used with the simulator.

5http://toilers.mines.edu/papers/pdf/Models.pdf

7

http://toilers.mines.edu/papers/pdf/Models.pdf�


2.4 Visualiser

Application engineers can often benefit from viewing in 2D form how the
nodes they are simulating are moving about in order to infer move informa-
tion about the behaviour of their programmes. The inclusion of a visualiser
is therefore a feature which cannot ignored and will be one of the highlights
of the API.

8



3 Abstract Approach

3.1 High Level Overview

Figure 1: High Level overview of system components.

The MobNet simulation environment is built of 3 components:

• MobNet Java API which mirrors the java.net.* API and provides the
application programmer with the same API so the application pro-
grammers need not have to change any method calls or arguments in
order to run their applications on the simulator. This enables applica-
tions to be quickly ported for use in the simulator are only an import
statement needs to be change to any class which uses java.net.

• A Virtual Network component which simulates the physical layer and
deals with exchanging packets between nodes involved in the simula-
tion.

• Simulator Manager, this controls the simulation and allows the devel-
oper to set parameters such as mobility models and which applications
are to be simulated. The manager also contains the visualiser compo-
nent.

Figure 1 shows how the 3 components integrate together with the ap-
plications being simulated. Each application, here labelled as a node, runs
under the Simulation Manager. The Simulation Manager is responsible for
launching and configuring the applications and starting the underlying sim-
ulation environment. Once the applications are running they then have
access to the Virtual Network via the MobNet API. This API shadows the
java.net API therefore applications programmers need make no changes to
their networking code. The MobNet API and Virtual Network combine to
allow multiple applications to transparently appear as independent hosts on
one computer.

9



Figure 2: 2nd Level overview of system components.

3.2 2nd Level Overview

We will now introduce more detail into the explanation of the system. Fig-
ure 2 shows 3 more components the Visualiser, Node Manager and Dis-
patcher.

The Node Manager is responsible for keeping track of details and prop-
erties each node possesses. These include the colour a node appears in the
Visualiser, the current co-ordinates in the simulation field and the name of
the application Java class to be executed as the application for this node.

The Visualiser directly takes the co-ordinates of each Node from the
Node Manager and draws and on-screen 2D representation of the current
simulation field. Each node being simulated is automatically given a colour
by the node manager in order to help the application developer trace dif-
ferent types of applications to their position in the simulation field. This
feature for example could be used to quickly find where a server type appli-
cation is compared to the rest of the other nodes, helping to provide feedback
on performance.

Each node deposits packets into the Virtual Network through the Mob-
Net API. The Dispatcher then services these packets in a FIFO manner and
sends them to their destination node. The Dispatcher is an integral part of
the Simulation and runs as a thread servicing the Virtual Network packet
queue. We will now explain in more detail the relationship between Nodes
and the Virtual Network.

10



4 The MobNet API for Java - Implementation

• Implemented and tested using Java 1.4.205

• Current Number of Lines of Code: 5600

Figure 3: Two Nodes connected by the Virtual Network

Each node in the simulation contains a MobNet object. This encapsulates
the Virtual Network and provides a handler to all ServerSockets, Sockets
and DatagramSockets created by a node. Sockets therefore have access to
the Virtual Network and packets are sent to the Virtual Network to be
dispatched to the destination. The Dispatcher gains access to destination
Sockets via the Simulation Manager. The Simulation Manager has a handle
to the MobNet objects of each Node. The Dispatcher finds the destina-
tion IP address of a packet and then looks up the MobNet object for the
required IP Address(node). It then checks to see if the packet is a Data-
gram or a TCP/IP type packet before depositing the packet directly into
the destination Socket via the ArrayList containing all Sockets.

These are the basic principles by which the application nodes have a
simulated network in which they can send and receive data and is the core
of the system. Next we will discuss how application nodes achieve separation
from each other, gain IP Addresses and communicate with the common core.

4.1 The MobNet ThreadGroup

One of the hardest issues we had to resolve was how to let each node execute
as a separate entity yet transparently allow it access to the Virtual Network.

11



How should a node gain access to the the Virtual Network transparently
from the application developer. Obviously each node would have to share
the same Virtual Network and so an initial solution is to have a static class
which encapsulates the Virtual Network. This solves the immediate problem
of nodes having access to a network. However a further problem arises. In a
real life scenario each node can be pre-configured with an IP Address. This is
used by networking layer of the Operating System on which the application
is running to append each outgoing packet with the source IP Address. We
therefore need each application node in the simulator to have an IP Address
which it can use exclusively. One answer is to set it as a variable in each
Java Class which uses networking features however this detracts from one
of our design aims which is to make the use of the simulator as transparent
as possible for the developer. By making the developer explicitly include
variables in each class we are adding development overhead which we were
not keen on doing.

The solution was to implement a new type of ThreadGroup which en-
capsulates a MobNet, under which the application node runs in a thread
normally. When the Simulation Manager launches an application node class
it creates a new thread, the Application Container. The thread is then
paired with a MobNet Thread Group and will run under it. This then acts
as a container for the application and provides a way for an application to
access it’s MobNet. When a Socket is created by an application node the
MobNet API transparently traverses the thread group structure in which
the thread is running until it finds the one containing the MobNet. In our
implementation this is done by the MobNetGrabber class. Once the Socket
has a reference to the MobNet it then can add itself into the ArrayList
of Sockets and also acquire its IP Address, solving the previous problem.
Figure 3 shows how the programmer has the flexibility of implementing net-
working calls in whichever thread structure he wants to. This is because the
top Level thread will always be the one created by the Simulation Manager
and as such it will always contain the handle to the nodes MobNet.

In order a give a clear picture on how each part of the MobNet API
works, while giving a transparent view to the application developer, we now
give an example run through on how the ServerSocket and Socket parts of
the API work together with the Virtual Network.

4.2 MobNet.ServerSocket

Program listing 1, shows how a ServerSocket is created by an application
developer with our API. As you can see it is exactly the same as the java.net
package. When an instance of ServerSocket is created the thread hierarchy
in which the call is made is traversed until the MobNet ThreadGroup is
found. Once the MobNet is found a reference to the ServerSocket is added
into the ArrayList of ServerSocket’s. The ServerSocket contains a buffer

12



Figure 4: An example thread structure containing two applications.

Program 1 Example code for setting up a Server Socket
ServerSocket dateServer = new ServerSocket(3000);
System.out.println("Waiting for connections.");
Socket client = dateServer.accept();
print("Accepted a connection");

which accepts New Connection packets, called PIPs, from other hosts. New
Connection packets are created when a host wishes to connect to a Server-
Socket, show pictorially in Figure 5. The host sends it’s own IP Address
and port number to the desired ServerSocket. The New Connections buffer
therefore acts as a list of hosts wishing to connect to Server. If there are no
hosts wishing to connect, the use of accept() will block. The ServerSocket
thread waits and gets notified when a New Connection packet arrives.

The reason we use New Connection (PIP) packets is that a client Socket
needs to somehow notify the ServerSocket that it wishes to connect and
supply its details (IP, port number). If we had used a direct method call
this would introduce a bottleneck as all calls would be synchronous. Instead
we have an asynchronous queue, the New Connections buffer, which the
ServerSocket then services.

13



Figure 5: Pictorial view of a ServerSocket.

4.3 MobNet.Socket

Compared to ServerSockets, Sockets are more complicated in their construc-
tion. A client has to synchronise with a server and only once both parties
have set up the connection can data transfer begin. This enforced the use
of synchronisation primitives for threads and the solution is now described.

Initially when a Socket is created a boolean isReady is set to false. This
boolean represents the successful set up of a Socket to a Server and vice
versa. The Socket then calls the Manager and requests to be connected to
a ServerSocket as a specified IP Address and port number. The Manager
now finds the MobNet for the desired destination IP Address and finds
the correct ServerSocket. A PIP is then input into the ServerSocket’s New
Connections buffer. A PIP is a class which encapsulates the port number
and IP Address of the client which is wanting to connect to the Server.
The PIP also connects a reference to the client’s Socket object, which has
just initiated this set up process. Now the ServerSocket starts processing
the new connection request and while this is happening the socket, using a
class called MobNetGrabber (described in Section 4.1), gains reference to
the nodes MobNet. A Buffer is then created in order to store the Socket’s
incoming packets and then the Socket is added into the ArrayList of Socket’s
in the MobNet. On the server side, the ServerSocket recieves a PIP and
starts to create the reciprocal Socket to the client. There is a difference in
the creation of a Socket on the server side. A Socket created by a server does
not search for a ServerSocket at the required destination, it just creates the
Socket and waits to be used. Once the server has set up the Socket to the
client the two can now synchronise. The server has a PIP which contains a
reference to the clients Socket. The boolean isReady is now set to true, and
the clients Socket can now begin communications. Figure?? gives a brief

14



Figure 6: Brief overview of Socket set-up

15



overview of the process described above.

4.4 MobNet.OutputStream

A Socket contains an implementation of an OutputStream and InputStream
in order to let the developer read and write to the Socket. The Output-
Stream effectively wraps data to be sent in a Packet addressed to the des-
tination of the Socket. The Packet is then sent to the Virtual Network via
the MobNet. The class MobNet has a method which allows nodes to de-
posit Packets into the Virtual Network. MobNet.OutputStream mirrors the
java.io version in that it has three ways of writing bytes to the output, 1
byte at a time, a byte array at a time or a part of a byte array at a time.

4.5 MobNet.InputStream

Figure 7: Overview of how packets reach an InputStream

The Dispatcher sends Packets to a buffer in the desired Socket, via the
Socket lookup mechanisms described in Section 6. Inside the Socket a thread
monitors the buffer and unwraps the data in any Packets received and passes
the data into the byte buffer of an InputStream, shown in Figure7.

4.6 Mobnet.DatagramSocket

The DatagramSocket was a lot easier to implement than the TCP/IP based
Socket. This is because DatagramSocket’s do not rely on synchronisation
with the reciever and so implementation is relatively straight forward. When
a new DatagramSocket is created a buffer is created to store incoming pack-
ets, it is bound to a port and a reference to it is kept in the corresponding
MobNet to which it belongs to. DatagramPackets are then created by the

16



client and sent via the DatagramSocket using the mechanism of depositing
them into the Virtual Network. We have created our own implementa-
tion of DatagramPackets mainly to overcome the fact that as yet our API
only supports String IP addresses. When being sent to the Virtual Net-
work DatagramPackets are encapsulated in our API’s Packet representation
for compatibility with the Dispatcher (Section 4.7. Incoming packets are re-
ceived using the recieve() command which blocks if no DatagramPackets are
available, with a timeout made possible through the use of the SocketTimer
(Section ??.

4.7 The Dispatcher

The Dispatcher is part of the core of the simulation environment. It is re-
sponsible for the distribution of packets to their destinations and is therefore
used very heavily. It also has the task of filtering packets which are sent
between reachable and unreachable hosts. A very simple and efficient de-
sign is therefore used to implement this. The Virtual Network is in effect
a buffer containing packets. The Dispatcher takes a Packet from the Vir-
tual Network, looks up the source and destination IP Address. Via the Node
Manager it checks to see if the two nodes are in range. If they are in range it
finds the desired MobNet for the destination IP Address via the Simulation
Manager. The required socket for the port number specified in the Packet is
then found and the Packet is the deposited into the Socket’s Packet buffer.
Packets involving nodes which are not in range are dropped.

4.8 The Node Manager

Along side the Dispatcher, the Node Manager is one of the most fundamental
parts of the simulation environment. The Node Manager provides a com-
mon interface to configure, store and change characteristics of each node.
The Node Manager stores a representation of each node in a Class called
VisualNode. The NodeManager contains the method to create VisualNode
entities which is used by the Simulation Manager and will be described later.
It is implemented using a Singleton Pattern in order to provide each com-
ponent with a consistent centralized access method and to ensure no duality
in representations.

VisualNodes contains the following information:

• IP Address - A String representation of this nodes IP Address.

• X - The current X co-ordinate position of the node in the simulation
field in integer form.

• Y - The current Y co-ordinate position of the node in the simulation
field in integer form

17



• Colour - The colour this node is represented by in the Visualiser.

• ToX - The X co-ordinate to which this node is heading

• ToY - The Y co-ordinate to which this node is heading.

• StepX - The incremental increase in X co-ordinate for one frame of
animation in the Visualiser.

• StepY - The incremental increase in Y co-ordinate for one frame of
the animation in the Visualiser.

Internally the co-ordinates are kept as doubles, but when co-ordinates are
requested by other components they can only access the integer representa-
tions because the added accuracy is not needed by these other components.

The Node Manager contains methods which are used to modify the posi-
tion of Nodes, used during simulation set up, as well as a method to enquire
if two nodes are in range (used by the Dispatcher). There are also 2 meth-
ods which are used to modify the positions of nodes during a simulation.
A move nodes method is used to move the position to which each node is
heading to which is used in conjunction with method called nodestep which
moves the they amount they should move in a frame of the Visualiser.

4.9 The Visualiser

One of the most defining features of this API is the Visualiser component.
The component allows a developer to quickly see the state of the simulation
field and can help analyse application performance. Built on top of the
Node Manager, the Visualiser provides the heart beat of the simulation.
The Visualiser initiates the movement of nodes via the Node Manager and
then displays a 2D representation on screen resulting in the movement being
fully synchronised with the Visualiser.

All nodes are held static until the simulation starts. When the simulation
is started a thread runs through and moves the nodes in the Node Manager
and the on-screen representations. At present the frame rate is fixed to
6.25 frames per second. Therefore this also represents the granularity of the
movements each node makes in the Node Manager. We had to choose a
compromise on the frame rate and overall efficiency. The greater the frame
rate the greater the overhead in moving the nodes and re-adjusting the
co-ordinates in the Node Manager. However the lower the frame rate the
less realistic the simulation of the movement of nodes. By trial and error
analysis it was decided that 6.25 frames per second represented an ideal
point between granularity of node movement, smoothness of animation and
program efficiency. In future versions we hope to enable the user to be able
to fine tune this parameter.

18



As stated previously the Visualiser runs on top of the Node Manager
and interacts with it via a very simple interface. The NodeManger has two
methods movenodes and nodestep, described in Section 4.8. The Visualiser
calls movenodes every 50 frames allowing the nodes to change position. On
an inter-frame basis the Visualiser calls nodestep in order to increment the
positions of each node by 1 frame.

The NodeManager and VisualNodes export interfaces in order to make
the Visualiser an easy to replace Component. The Visualiser itself extends
from JPanel allowing the Visualiser to be upgraded/extended with great
ease. In order to change the Visualiser all that needs to be done is to extend
a JPanel and then work with the defined interfaces for the NodeManager
and VisualNodes. The NodeManager is used to move the co-ordinates of the
nodes, while the VisualNode’s are used to extract the exact co-ordinates in
a time frame in order to render the nodes to screen.

Figure 8: Overview of Visualiser interaction with NodeManager

4.10 The Simulator Manager

The Simulator Manager is implemented in a Singleton Class called Sin-
gletonManager. This provides a centralised repository for nodes to store
their MobNet’s and centralised access for the Dispatcher to get access to
MobNet’s. MobNet’s are stored in an ArrayList and can be retrieved by
IP address. The manager also has the task of initialising and starting the
Dispatcher.

19



4.11 The Simulator GUI

(a) Simulator Set-up (b) Node Manager

(c) Visualiser

Figure 9: The Simulator GUI

A GUI is included in order to configure and boot-strap the simulation.
The first screen, Figure 9(a), is fire’s off basic start-up mechanism for the
simulation. The user select’s the mobility model required for the simulation
and then hits Start Simulation. This will cause all the applications registered
in the Node Manager screen, Figure 9(b), to be launched.

The Node Manager is used to configure the nodes required in the simula-
tion. It allows the user to fix the start position, IP Address and application
Class to be simulated for each node. These details are stored and edited via
a class called NodeTableModel. A seperate data model is required by the
JTable component in order to render the table’s contents. The NodeTable-

20



Model flushes all changes to a Node’s details to the NodeManager component
to ensure both sets of data are entirely consistent. The Node Manager pane
automatically assigns colours to a node via a separate class called a Color-
Manager. The Visualiser requires colors to be of the type java.lang.color,
however the Node Manager JTable can only display java.awt.ImageIcon ob-
jects. Therefore each colour is paired with a corresponding image and stored
as a ColorIcon. The ColorManager sequentially cycles through and outputs
a different colour from a set of 13 when a Color request is made by the Node
Manager. The colour is then assigned to a node.

Once all information is input into the Node Manager the simulator
is ready to go. When Start Simulation is pressed the each entry in the
NodeTableModel is iterated in order to launch the applications. A MobNet
for each application node with the corresponding IP Address is also created.
The simulation environment is now ready.

The Visualiser, shown in Figure 9(c), is explained in Section 4.9.

4.12 The SocketTimer

One of the most trickiest things to implement was a timer which would throw
and exception after a given amount of time for use in Socket timeouts. Class
InputStream needs to be able to throw a SocketTimeoutException after a
configurable amount of time. Given this basic requirement you would think
that it would be simple to implement. Java provides Timer and TimerTask
classes to encapsulate something you want to occur after a given time period.
TimerTask is like the Thread class and includes a run() method in which
you put the code you want executed. However the run() method cannot
throw an exception and propagate it up to the Timer making this mech-
anism unsuitable for our purpose. The solution was to create a new class
called SocketTimer. A SocketTimer is a Thread which sleeps for the given
timeout period. On awakening it sets a flag in the InputStream making
the InputStream throw a SocketTimeoutException. However if the Socket
receives data during the time that the Timer is sleeping, the Timer is in-
terrupted and aborted. This is summarised in the sequence diagrams in
Figure 10

4.13 Handling Graphical User Interfaces

Unfortunately when trying to test out graphical applications we found that
our API could not support applications in which Sockets are created as a
response to GUI Events. The reason for this is because of the way Events
are handled in Java and how our MobNet Thread Group mechanism works.
Our MobNet Thread Group traverses the current thread hierarchy to find
the MobNet Thread Group so that it can then gain access to the MobNet
object for the application that is calling the method in the MobNet API.

21



(a) Socket with timeout occuring

(b) Socket with timeout avoided

Figure 10: SocketTimer sequence diagrams

However, in Java all GUI events are handled by the Event Manager which
runs as a separate thread in the Java Virtual Machine. This means that
the encapsulation we previously relied on to separate calls to the API is lost
therefore we can no longer use the Thread Group mechanism to find out
which application made the call.

22



5 Example Application

Contained in the appendix is code for a sample Date Server application.
This is included to give a taste of how easy it is to convert a normal net-
work application for use in our simlulation. The only change to be made is
changing the import statements from java.net.* to mobnet.*.

23



6 Evaluation

Our system relies heavily on the continuous interaction of components and
multi-threading. Figure 11 shows how thread creation scales as more clients
are added to the system. By inspection we can see that 9 threads are created
per Client being simulated. Threads are lightweight and do not impose too
much of a performance overhead in creation, however it is important that
they are managed properly in order to avoid starvation and bottlenecks
being created by suffocation. The MobNet API is thread safe and in testing,
deadlock has not been achieved so far. Even so at a minimum of 9 extra
thread per client created this is on the high end of the Thread scale. However
we believe that improvements in desktop processors will allow this to be a
reasonable overhead and will not impose to big a performance penalty.

Figure 11: Thread usage scaling per client

Intel’s Hyper-Threading Technology enables multi-threaded software ap-
plications to execute thread in parallel. Hyper-threading allows processor
level threading to be utilised which offers more efficient use of processor re-
sources. It also provides greater parallelism and improved performance.[1]6

Dual-Core Technology is the next big development in processor archi-
tecture. A dual-core processor is a single physical package that contains
two microprocessors. The microprocessors share the same packaging and
the same bus interface into the chipset and memory. However, they operate
as distinct central processing units (CPUs), with the exception that they
may share the higher level cache. Therefore, dual-core processors are the
next logical step for Hyper-Threading Technology. Again this should allow

6http://www.intel.com/technology/hyperthread/

24

http://www.intel.com/technology/hyperthread/�


multiple multi-threaded applications to run smoothly together.[1]7

The Visualiser is one of the most impressive features of our work, but
it also imposes a performance penalty. The penalty comes from the use of
animation and rendering techniques but we hope to streamline the animation
process in the future to reduce the performance overhead it imposes. Part
of the reason there is a performance overhead is because we have created
a dynamically re-sizeable Visualiser which can automatically alter all font
and shape metrics. Therefore calculations take places when rendering each
frame which could be reduced if we resorted to a fixed size for the Visualiser.
A surprise was how well memory requirements scale for the Visualiser.

Figure 12: Java VM Memory usage with increasing number of visualised
nodes

Figure 12 shows how the Java VM handles the increasing load of nodes
with some ease. As the number of nodes reaches 45 the increase in memory
usage is very small and almost negligible.

We have analysed the CPU share each package uses in the java implemen-
tation. The DateServer and DateClient applications were used to simulate
a number of nodes and at the end of the simulation the CPU load data was
gathered. This allows us to gain a sense of which components are used most
and points us in direction in which to aim efficiency improvements. The
Visualiser was not used in these tests in order to avoid the foreseen skew
that it would impose on the results.

7http://cache-www.intel.com/cd/00/00/20/57/205705 205705.pdf

25

http://cache-www.intel.com/cd/00/00/20/57/205705_205705.pdf�


We found that as more clients are simulated, the gui package has a lesser
share of CPU load. This is because without the Visualiser the gui package
is only used to set up and start the simulation therefore as you would expect
it becomes it is less prominent when more clients are simulated.

Figure 13: CPU Share per package

We found that the use of MobNet and core packages were linked and
generally stabilised as the number of nodes being simulated increased. The
exact share these two packages have on CPU load is depends on the type of
applications being simulated.

The primitive package as expected increased in CPU share as the number
of clients increased. This is because the primitive package contains types
which are heavily used, the Packet and Buffer classes. As the number of
nodes increases these two classes become the most prominent to be used as
they are the basic building blocks of the simulation API. Therefore we should
concentrate efforts aim to streamline the API by increasing the efficiency in
the creation and use of such objects

26



7 Conclusions

This paper has described the MobNet Simulation API, a tool to aid devel-
opment of mobile Java applications. The API features a GUI tool to set
up the simulation environment, a Visualiser tool and an API that shadows
java.net. The API at present is not complete and does not fully replicate
the java.net API (due to time constraints) therefore we would hope that
in the future we could fully replicate the java.net API. At present our API
only accepts IP addresses and however it should be possible in the future to
integrate a DNS component to convert host names to IP addresses.

The simulation environment only provides basic simulation primitives
and we would like to include finer grained simulation environments which
could include different technologies such as different ranges, for example for
Bluetooth and 802.11. This would then allow developers to try out different
connectivity profiles and see how tolerant their applications are to different
network conditions. We could include multi-hop routing and then different
routing protocols into the simulator. At present their is uniform movement
of all nodes in the simulation environment. It is possible to make nodes
move at different paces and with different mobility models.

Discussed in Section 1.1 was the fact that the battery life of mobile
devices is an issue in the development of applications. Therefore it would
beneficial for developers if our applications had some kind of battery life
emulation which could be used to optimise applications.

The possibilities of extensions are endless but the complexity rises with
each level of added detail. However, future research should be conducted
in order to fully exploit the use of multiple processors /cores to make the
simulation environment more efficient while being detailed.

At present the bottleneck on performance is the Visualiser component
which uses a lot of CPU time rendering. A more efficient implementation
could be developed which would make use of Swing Timers and a fixed size
of rendering, as discussed in Section 6.

While the GUI allows users to set the various properties of the simula-
tion, at present, it does not allow users to save their preferences and the
applications involved in the scenario. This feature would allow scenario’s to
be saved, possibly to XML, saving the developer the time associated with
setting up the simulation.

We have achieved almost full transparency for the application developer
in order to use his/her application on the simulation platform. In order to
achieve full transparency we could either implement a class re-writer which
would overwrite the java.net.* import statement with the mobnet.* import.
This is still rather crude and would require the source code. The ideal
solution and something which could be worked on in the future would be
to dynamically substitute calls for the java.net API for calls to our MobNet
API.

27



Figure 14: The Mobile Development Life-Cycle, blue highlight shows the
phases where the MobNet API is beneficial

A feature which we would like to add is similar to the Statistics layer
in FRANC (give ref to paper). It would provide feedback to the developer
and a trace of the the actual simulation. A log of node movements, packets
being sent, packet losses, packets recieved, etc could be used in order aid
the developers comprehension of the simulation.

Being able to handle any GUI’s is a goal which at present seems infeasible
because of the design of the Java Virtual Machine. One option is to redesign
it, however this would affect the level of transparency we are trying to achieve
with our API.

While Java is the most popular mobile platform, I believe that Symbian
OS and Microsoft’s .NET Compact Framework will become increasingly
important in the arena and so a port to these platforms would be highly
recommended.

The work we have presented here is a first for the field and should provide
an interesting base from which to direct future research. A key driver for
the future development of this or any other similar simulation tool is the
benefits that such tools can provide to developers. Our tool offers developers
increased flexibility and help in the evaluation prototypes which saves time
and cost. Figure 14 shows where the MobNet API tool fits into the mobile
application development cycle. While development cost and time can be
reduced through such tools, research should and will continue in this area.

28



References

[1] Jeff Andrews. Preparing for hyper-threading technology and dual-core
technology. Technical report, Intel, 2004.

[2] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Jist:
An efficient approach to simulation using virtual machines. SOFT-
WAREPRACTICE AND EXPERIENCE, 2004.

[3] Tracy Camp and Jeff Boleng andVanessa Davies. A survey of mobility
models for ad hocnetwork research. Technical report, Dept. of Math.and
Computer Sciences Colorado School of Mines, Golden, CO, 2002.

[4] Juan Flynn, Hitesh Tewari, and Donal OMahony. Jemu: A real. time
emulation system for mobile ad. hoc networks. n/a, 2002.

[5] Intel Research. Intelmobileapplication architecture guide. Technical re-
port, Intel, 2004.

29



A Example Code

30



Program 2 A Date Server
import java.io.*; import mobnet.*; import java.util.*;

public class DateServer extends Thread {

private ServerSocket dateServer;

public static void main(String argv[]) throws Exception {
new DateServer();

}

public DateServer() throws Exception {
ThreadGroup tg = Thread.currentThread().getThreadGroup();
String name=tg.getName();
tg.list();
print("found group with name="+name);
dateServer = new ServerSocket(3000);
System.out.println("Server listening on port 3000.");
this.start();

}
private void print(String s)
{
System.out.println("DateServer: "+s);

}
public void run() {
while(true) {
try {
System.out.println("Waiting for connections.");
Socket client = dateServer.accept();
print("Accepted a connection");
Connect c = new Connect(client);

} catch(Exception e) {}
}

}
}

31



Program 3 Connect Class

import mobnet.*; import java.io.*; import java.util.*;

class Connect extends Thread {
private Socket client = null;
private ObjectInputStream ois = null;
private ObjectOutputStream oos = null;

public Connect() {}

public Connect(Socket clientSocket) {
client = clientSocket;
try {
ois = new ObjectInputStream(client.getInputStream());
oos = new ObjectOutputStream(client.getOutputStream());

} catch(Exception e1) {
try {

client.close();
}catch(Exception e) {
System.out.println(e.getMessage());

}
return;

}
this.start();

}

public void run() {
try {

oos.writeObject(new Date());
oos.flush();
// close streams and connections
ois.close();
oos.close();
client.close();

} catch(Exception e) {}
}

}

32



Program 4 The DataClient Class
public class DateClient {

public static void main(String argv[]) {
String serveraddress;
ObjectOutputStream oos = null;
ObjectInputStream ois = null;
Socket socket = null;
Date date = null;
try {
// open a socket connection
// find server IP

serveraddress = "1";
socket = new MobSocket(3000,serveraddress);
// open I/O streams for objects
oos = new ObjectOutputStream(socket.getOutputStream());
ois = new ObjectInputStream(socket.getInputStream());
// read an object from the server
date = (Date) ois.readObject();
System.out.print("The date is: " + date);
oos.close();
ois.close();

} catch(Exception e) {
System.out.println(e.getMessage());

}
}

}

33



B Java Verified Criteria

The following is an excerpt from the Java Verified Program application
testing program, specifically the document: Unified Test Criteria for Java
Technology-based Applications for Mobile Devices.

Figure 15: Criteria for Network part of Application

34


